miércoles, 30 de noviembre de 2011

Busqueda Binaria

CONCEPTO1.- Es un metodo que permite buscar un valor en una matriz que se esta ordenando ascendentemente utilizando el algoritmo de busqueda binaria. Es un algoritmo muy eficiente ya que requiere de poco tiempo para realizar una busqueda
CONCEPTO2.- La búsqueda binaria consiste en dividir el array por su elemento medio en dos subarrays más pequeños, y comparar el elemento con el del centro. Si coinciden, la búsqueda se termina. Si el elemento es menor, debe estar (si está) en el primer subarray, y si es mayor está en el segundo.
CARACTERISTICAS.- Uno de los algoritmos de búsqueda más eficiente que existe en la estructura de datos es la búsqueda binaria, las características para poder implementar este algoritmo son las siguientes:
  • Los datos deben estar contenido en un estructura de datos tipo vector
  • Los datos del vector deben estar ordenados 
Una vez que se cuenten son las características descritas, se divide el vector para poder conocer la posición central y se verifica si es el dato que se esta buscando (lineas 9-12), si es el dato que se busca regresa la posición (índice del vector), en caso de que no sea el dato que buscamos se verifica si es mayor o menor que la posición central y se vuelve a redefinir la posición final o inicial según cumpla la condición (lineas 14-18).
OPERACIONES.-Todas las operaciones realizadas sobre árboles binarios de búsqueda están basadas en la comparación de los elementos o clave de los mismos, por lo que es necesaria una subrutina, que puede estar predefinida en el lenguaje de programación, que los compare y pueda establecer una relación de orden entre ellos, es decir, que dados dos elementos sea capaz de reconocer cual es mayor y cual menor. Se habla de clave de un elemento porque en la mayoría de los casos el contenido de los nodos será otro tipo de estructura y es necesario que la comparación se haga sobre algún campo al que se denomina clave.
 Por ejemplo, para buscar el elemento 3 en el array {1,2,3,4,5,6,7,8,9} se realizarían los siguientes pasos:
Se toma el elemento central y se divide el array en dos: {1,2,3,4}−5-{6,7,8,9} Como el elemento buscado (3) es menor que el central (5), debe estar en el primer subarray: {1,2,3,4} Se vuelve a dividir el array en dos: {1}−2-{3,4} Como el elemento buscado es mayor que el central, debe estar en el segundo subarray: {3,4} Se vuelve a dividir en dos: {}−3-{4} Como el elemento buscado coincide con el central, lo hemos encontrado.

Este método permite buscar un valor en una matriz que se esta ordenando ascendentemente utilizando el algoritmo de búsqueda binaria. Se trata de un algoritmo muy eficiente en cuanto el tiempo requerido para realizar una búsqueda es muy pequeño. La sintaxis expresada de forma genérica para realizar este método es la siguiente:
Int BinarySearch ([ ] m. tipo clave)
La búsqueda binaria sólo se puede implementar si el arreglo está ordenado. La idea consiste en ir dividiendo el arreglo en mitades. Por ejemplo supongamos que tenemos este vector:
int vector[10] = {2,4,6,8,10,12,14,16,18,20};
La clave que queremos buscar es 6. El algoritmo funciona de la siguiente manera
  1. Se determinan un índice arriba y un índice abajo, Iarriba=0 e Iabajo=10 respectivamente.
  2. Se determina un índice central, Icentro = (Iarriba + Iabajo)/2, en este caso quedaría Icentro = 5.
  3. Evaluamos si vector[Icentro] es igual a la clave de búsqueda, si es igual ya encontramos la clave y devolvemos Icentro.
  4. Si son distintos, evaluamos si vector[Icentro] es mayor o menor que la clave, como el arreglo está ordenado al hacer esto ya podemos descartar una mitad del arreglo asegurándonos que en esa mitad no está la clave que buscamos. En nuestro caso vector[Icentro] = 5 < 6, entonces la parte del arreglo vector[0…5] ya puede descartarse.
  5. Reasignamos Iarriba o Iabajo para obtener la nueva parte del arreglo en donde queremos buscar. Iarriba, queda igual ya que sigue siendo el tope. Iabajo lo tenemos que subir hasta 6, entonces quedaría Iarriba = 10, Iabajo = 6. Y volvemos al paso 2.
PROGRAMA.-

//Busqueda binaria
//en un arreglo.
#include <iostream>
using std::cout;
using std::cin;
using std::endl;
void mostrarArreglo(const int[], int); //prototipo de funcion que
recibe un arreglo constante
int busquedaBinaria(const int[], int, int); //arreglo, tamano, clave
void ordenarArreglo(int[], int); //prototipo que modifica y ordena el
arreglo
void intercambiar(int&, int&); //prototipo, intercambia
los valores de dos elementos
int main()
{
int clave =0;
const int tamano = 15;
int arreglo[tamano] = {25,17,13,16,41,32,12,115,95,84,54,63,78…
//ordenamos el arreglo para que funcione la busquedaBinaria
ordenarArreglo(arreglo,tamano);
cout << "Elementos del arreglo: " << endl;
mostrarArreglo(arreglo,tamano);
cout << "Indique un valor a buscar y se le devolvera el indice: " << endl;
cin >> clave;
cout<< "Su valor se encuentra en arreglo["<<busquedaBinaria(arreglo,taman… << endl;
cout << "Fin del programa :)" << endl;
return 0;
}//fin de main
void mostrarArreglo(const int arreglo[], int tamano)
{
for (int i = 0 ; i < tamano ; i++)
cout << "arreglo[" << i << "]=" << arreglo[i] << endl;
}
int busquedaBinaria(const int arreglo[], int tamano, int clave)
{
int Iarriba = tamano-1;
int Iabajo = 0;
int Icentro;
while (Iabajo <= Iarriba)
{
Icentro = (Iarriba + Iabajo)/2;
if (arreglo[Icentro] == clave)
return Icentro;
else
if (clave < arreglo[Icentro])
Iarriba=Icentro-1;
else
Iabajo=Icentro+1;
}
return -1;
}
void ordenarArreglo(int arreglo[], int tamano)
{
for (int i = 0; i< tamano -1 ; i++)
for (int j = 0; j< tamano -1 ; j++)
if (arreglo[j] > arreglo[j+1])
intercambiar(arreglo[j],arreglo[j+1]);
}
void intercambiar(int &a, int &b)
{
int tmp = b;
b = a;
a = tmp;
}

VIDEO BUSQUEDA BINARIA EN JAVA

lunes, 14 de noviembre de 2011

Grafos

Concepto.-Un grafo en el ámbito de las ciencias de la computación es una estructura de datos, en concreto un tipo abstracto de datos (TAD), que consiste en un conjunto de nodos (también llamados vértices) y un conjunto de arcos (aristas) que establecen relaciones entre los nodos. El concepto de grafo TAD desciende directamente del concepto matemático de grafo.
Informalmente se define como G = (V, E), siendo los elementos de V los vértices, y los elementos de E, las aristas (edges en inglés). Formalmente, un grafo, G, se define como un par ordenado, G = (V, E), donde V es un conjunto finito y E es un conjunto que consta de dos elementos de V.

http://es.wikipedia.org/wiki/Grafo_(estructura_de_datos)

Son las líneas con las que se unen las aristas de un grafo y con la que se construyen también caminos.
Si la arista carece de dirección se denota indistintamente {a, b} o {b, a}, siendo a y b los vértices que une.
Si {a ,b} es una arista, a los vértices a y b se les llama sus extremos.
  • Aristas Adyacentes: Se dice que dos aristas son adyacentes si convergen en el mismo vértice.

  • Aristas Paralelas: Se dice que dos aristas son paralelas si vértice inicial y el final son el mismo.

  • Aristas Cíclicas: Arista que parte de un vértice para entrar en el mismo.

  • Cruce: Son dos aristas que cruzan en un punto.

Son los puntos o nodos con los que esta conformado un grafo. Llamaremos grado de un vértice al número de aristas de las que es extremo. Se dice que un vértice es `par' o `impar' según lo sea su grado.
  • Vértices Adyacentes: si tenemos un par de vértices de un grafo (U, V) y si tenemos un arista que los une, entonces U y V son vértices adyacentes y se dice que U es el vértice inicial y V el vértice adyacente.
  • Vértice Aislado: Es un vértice de grado cero.

  • Vértice Terminal: Es un vértice de grado 1.

Sean x, y " V, se dice que hay un camino en G de x a y si existe una sucesión finita no vacía de aristas {x,v1}, {v1,v2},..., {vn,y}. En este caso
  • x e y se llaman los extremos del camino

  • El número de aristas del camino se llama la longitud del camino.

  • Si los vértices no se repiten el camino se dice propio o simple.

  • Si hay un camino no simple entre 2 vértices, también habrá un camino simple entre ellos.

  • Cuando los dos extremos de un camino son iguales, el camino se llama circuito o camino cerrado.

  • Llamaremos ciclo a un circuito simple

  • Un vértice a se dice accesible desde el vértice b si existe un camino entre ellos. Todo vértice es accesible respecto a si mismo

Los grafos se pueden clasificar en dos grupos: dirigidos y no dirigidos. En un grafo no dirigido el par de vértices que representa un arco no está ordenado. Por lo tanto, los pares (v1, v2) y (v2, v1) representan el mismo arco. En un grafo dirigido cada arco está representado por un par ordenado de vértices, de forma que y representan dos arcos diferentes.
Ejemplos
G1 = (V1, A1)
V1 = {1, 2, 3, 4} A1 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
G2 = (V2, A2)
V2 = {1, 2, 3, 4, 5, 6} A2 = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 6)}
G3 = (V3, A3)
V3 = {1, 2, 3} A3 = { <1, 2>, <2, 1>, <2, 3> }
Gráficamente estas tres estructuras de vértices y arcos se pueden representar de la siguiente manera:
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Algunos de los principales tipos de grafos son los que se muestran a continuación:
  • Grafo regular: Aquel con el mismo grado en todos los vértices. Si ese grado es k lo llamaremos k-regular.

Por ejemplo, el primero de los siguientes grafos es 3-regular, el segundo es 2-regular y el tercero no es regular
  • Grafo bipartito: Es aquel con cuyos vértices pueden formarse dos conjuntos disjuntos de modo que no haya adyacencias entre vértices pertenecientes al mismo conjunto

Ejemplo.- de los dos grafos siguientes el primero es bipartito y el segundo no lo es
  • Grafo completo: Aquel con una arista entre cada par de vértices. Un grafo completo con n vértices se denota Kn.

A continuación pueden verse los dibujos de K3, K4, K5 y K6
  • Un grafo bipartito regular: se denota Km,n donde m, n es el grado de cada conjunto disjunto de vértices.


    • Grafo nulo: Se dice que un grafo es nulo cuando los vértices que lo componen no están conectados, esto es, que son vértices aislados.

    • Grafos Isomorfos: Dos grafos son isomorfos cuando existe una correspondencia biunívoca (uno a uno), entre sus vértices de tal forma que dos de estos quedan unidos por una arista en común.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior
    • Grafos Platónicos: Son los Grafos formados por los vértices y aristas de los cinco sólidos regulares (Sólidos Platónicos), a saber, el tetraedro, el cubo, el octaedro, el dodecaedro y el icosaedro.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior
    Para definir un camino euleriano es importante definir un camino euleriano primero. Un camino euleriano se define de la manera más sencilla como un camino que contiene todos los arcos del grafo.
    Teniendo esto definido podemos hablar de los grafos eulerianos describiéndolos simplemente como aquel grafo que contiene un camino euleriano. Como ejemplos tenemos las siguientes imágenes:
    El primer grafo de ellos no contiene caminos eulerianos mientras el segundo contiene al menos uno.
    Un grafo se puede definir como conexo si cualquier vértice V pertenece al conjunto de vértices y es alcanzable por algún otro. Otra definición que dejaría esto más claro sería: "un grafo conexo es un grafo no dirigido de modo que para cualquier par de nodos existe al menos un camino que los une".

  Una de las aplicaciones mas importantes es de hallar el camino mas corto hacia un destino, ya sea de una ciudad a otra, de unos departamentos a otros, para el recorrido de árboles, sirve para la representación de algoritmos, etc. Un ejemplo de esto es la tarea de freír un huevo.









viernes, 4 de noviembre de 2011

Programa de Arboles en Java

package estructura;/**
 *
 * @author alumno
 */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;
import java.util.*;
public class ejemplo { 
    public static void main(String[] args) {
        JFrame frame = new SimpleTreeFrame();
      frame.show();
    }
    }
      
class SimpleTreeFrame extends JFrame
{
   DefaultMutableTreeNode root = new DefaultMutableTreeNode("Mundo");
   DefaultMutableTreeNode arge = new DefaultMutableTreeNode("Argentina");
   DefaultMutableTreeNode sant = new DefaultMutableTreeNode("Santa Fe");
   DefaultMutableTreeNode rafa = new DefaultMutableTreeNode("Rafaela");
   DefaultMutableTreeNode rosa = new DefaultMutableTreeNode("Rosario");
   DefaultMutableTreeNode safe = new DefaultMutableTreeNode("Santa Fe");
   DefaultMutableTreeNode vena = new DefaultMutableTreeNode("Venado Tuerto");
   DefaultMutableTreeNode vill = new DefaultMutableTreeNode("Villa Constitucion");
   DefaultMutableTreeNode cord = new DefaultMutableTreeNode("Cordoba");
   DefaultMutableTreeNode codo = new DefaultMutableTreeNode("Cordoba");
   DefaultMutableTreeNode cbro = new DefaultMutableTreeNode("Cura Brochero");
   DefaultMutableTreeNode rcua = new DefaultMutableTreeNode("Rio Cuarto");
   DefaultMutableTreeNode chac = new DefaultMutableTreeNode("Chaco");
   DefaultMutableTreeNode resi = new DefaultMutableTreeNode("Resistencia");
   DefaultMutableTreeNode vang = new DefaultMutableTreeNode("Villa Angela");
   DefaultMutableTreeNode chil = new DefaultMutableTreeNode("Chile");
   DefaultMutableTreeNode regi = new DefaultMutableTreeNode("Region Metropolitana");
   DefaultMutableTreeNode schi = new DefaultMutableTreeNode("Santiago de Chile");
   public SimpleTreeFrame()
   {  setTitle("SimpleTree");
      setSize(300, 200);
      addWindowListener(new WindowAdapter()
         {  public void windowClosing(WindowEvent e)
            {  System.exit(0);
            }
         } );
      root.add(arge);                                                   // Enlazado de nodos
      arge.add(sant);                                                   // Enlazado de nodos
      sant.add(rafa);                                                   // Enlazado de nodos
      sant.add(rosa);                                                   // Enlazado de nodos
      sant.add(safe);                                                   // Enlazado de nodos
      sant.add(vena);                                                   // Enlazado de nodos
      sant.add(vill);                                                   // Enlazado de nodos
      arge.add(cord);                                                   // Enlazado de nodos
      cord.add(codo);                                                   // Enlazado de nodos
      cord.add(cbro);                                                   // Enlazado de nodos
      cord.add(rcua);                                                   // Enlazado de nodos
      arge.add(chac);                                                   // Enlazado de nodos
      chac.add(resi);                                                   // Enlazado de nodos
      chac.add(vang);                                                   // Enlazado de nodos
      root.add(chil);                                                   // Enlazado de nodos
      chil.add(regi);                                                   // Enlazado de nodos
      regi.add(schi);                                                   // Enlazado de nodos
      JTree tree = new JTree(root);
      Container contentPane = getContentPane();
      contentPane.add(new JScrollPane(tree));
      Enumeration hijos = sant.children();                              // Enumeracion de hijos
      while ( hijos.hasMoreElements() )                                 // Enumeracion de hijos
      {                                                                 // Enumeracion de hijos
        System.err.println("Hijos de Santa Fe : "+hijos.nextElement()); // Enumeracion de hijos
      }                                                                 // Enumeracion de hijos
      boolean hoja = vena.isLeaf();                                     // Consulta Hoja
      System.err.println("Es Venado Tuerto hoja : "+hoja);              // Consulta Hoja
      Enumeration breadth = root.breadthFirstEnumeration();             // Enumeracion Nodos
      while ( breadth.hasMoreElements() )                               // Enumeracion Nodos
      {                                                                 // Enumeracion Nodos
        System.err.println("Breadth First : "+breadth.nextElement());   // Enumeracion Nodos
      }                                                                 // Enumeracion Nodos
      Enumeration depth = root.depthFirstEnumeration();                 // Enumeracion Nodos
      while ( depth.hasMoreElements() )                                 // Enumeracion Nodos
      {                                                                 // Enumeracion Nodos
        System.err.println("Depth First : "+depth.nextElement());       // Enumeracion Nodos
      }                                                                 // Enumeracion Nodos
      Enumeration preorder = root.preorderEnumeration();                // Enumeracion Nodos
      while ( preorder.hasMoreElements() )                              // Enumeracion Nodos
      {                                                                 // Enumeracion Nodos
        System.err.println("Pre Order : "+preorder.nextElement());      // Enumeracion Nodos
      }                                                                 // Enumeracion Nodos
      Enumeration postorder = root.postorderEnumeration();              // Enumeracion Nodos
      while ( postorder.hasMoreElements() )                             // Enumeracion Nodos
      {                                                                 // Enumeracion Nodos
        System.err.println("Post Order : "+postorder.nextElement());    // Enumeracion Nodos
      }                                                                 // Enumeracion Nodos
   }
}